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J. Phys. A :  Math. Gen. 16 (1983) 4 1 7 4 3 7 .  Printed in Great Britain 

On magnetoacoustic-gravity waves propagating or standing 
vertically in an atmosphere 

L M B C Campos 
Department of Applied Mathematics and Theoretical Physics, Cambridge University, U K t  

Received 26 April 1982, in final form 3 August 1982 

Abstract. Vertical hydromagnetic waves are considered in isothermal and non-isothermal 
atmospheres, with a constant external magnetic field, in the two cases where it is ( i )  vertical 
and ( i i )  horizontal, corresponding respectively to (i) a transversal Alfven-gravity wave and 
(ii) a longitudinal magnetosonic-gravity wave. It is shown that in any atmosphere (with 
bounded temperature and vanishing density at high altitude) the following laws hold for 
the asymptotic wavefields: (a)  for propagating waves the velocity perturbation grows 
linearly and the magnetic field perturbation is asymptotically constant; (b) for standing 
modes the velocity perturbation is finite (but non-zero) and the magnetic field perturbation 
decays exponentially to zero. These properties contrast strongly with acoustic-gravity 
waves, which exhibit exponential growth with altitude, whether propagating or standing. 
The laws (a)  and (b) are confirmed for isothermal atmospheres, in which case all asymptotic 
parameters can be calculated in terms of Bessel or hypergeometric functions, as particular 
forms of the expressions giving the velocity and magnetic field perturbations exactly at 
all altitudes and for all frequencies, both for standing modes and propagating waves. The 
magnetosonic-gravity wave evolves from a hydrodynamic regime similar to acoustic- 
gravity waves, through a transition layer, to a hydromagnetic regime similar to Alfven- 
gravity waves. The latter exhibits hydromagnetic behaviour at all altitudes, which is 
illustrated by plotting: ( i )  the waveforms for the first four standing modes; ( i i )  the amplitudes 
and phases of propagating waves of four different wavelengths. In both cases are included 
wavelengths comparable to or larger than the scale height, over which the atmospheric 
density and Alfven speed change substantially. 

1. Introduction 

Waves in fluids due to compressibility, magnetic fields and gravity are known respec- 
tively as acoustic (Rayleigh 1945, Morse and Ingard 1968), Alfvkn (1942, 1948) and 
internal (Rayleigh 1890, Yih 1965), and constitute a developing subject (Whitham 
1974, Lighthill 1978). Three types of two-wave interactions are possible, namely 
acoustic-gravity (Lamb 1908, Campos 1983a), magnetogravity (Uchida 1968, Howe 
1969) and magnetoacoustic (Lighthill 1960, Campos 1977) waves. The general three- 
wave interaction has been treated, using the WKBJ approximation (Lighthill 1964, 
Campos 1983~1, by means of dispersion relations (McLellan and Winterberg 1968 
Bray and Loughhead 1974) or by following the evolution of wavenumber surfaces 
with altitude (Lighthill 1967, Eltayeb 1977). 

The need for exact (rather than approximate) solutions valid over the entire altitude 
range (not just locally) was appreciated fairly early (Ferraro 1954, Hide 1956), leading 
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to the study of particular cases of hydromagnetic waves propagating or trapped in 
atmospheres, isothermal or non-isothermal (the latter with constant temperature 
gradient), with horizontal, vertical or oblique constant external magnetic fields (Meyer 
1968, Zhugzhda 1971, Hollweg 1972, Thomas 1976, Nye and Thomas 1976, 
Yanowitch 1980). 

Atmospheric phenomena occurring over many scale heights are dominated by 
vertical waves, which we will examine in several cases of magnetoacoustic-gravity 
modes ( $  l), including: (i) isothermal and non-isothermal atmospheres at rest, the 
latter with bounded temperature profile ( S  2); (ii) constant external magnetic fields, 
either horizontal or vertical, leading respectively to Alfvth-gravity and magnetosonic- 
gravity waves (9 3); (iii) standing modes reflected from infinity (OS 4,6) and upward 
or downward propagating waves ( 9 9  5 , 7 ) ;  (iv) plots of the waveforms, amplitudes and 
phases versus altitude for wavelengths comparable to or larger than the scale height 
( 8  8). 

A fundamental aspect which may not have been sufficiently emphasised in the 
literature is the qualitative (not just quantitative) difference between the properties 
of (star.Sing or propagating) waves in atmospheres with or without an external magnetic 
field (Campos 1983b). In the present instance this difference can be demonstrated 
by comparing: (i) the sound and Alfven speeds; (ii) the gas and magnetic pressures; 
(iii) the wave equations with magnetic field absent or present. The influence of these 
effects accumulates with altitude, and is most noticeable in the difference between 
the asymptotic fields of hydrodynamic and hydromagnetic waves. 

The sound speed CO depends (only) i n  temperature (for a perfect gas), and is 
constant in an isothermal atmosphere, and finite in a non-isothermal atmosphere with 
bounded temperature. The Alfven speed C1 varies inversely with (the square root 
of) density, and thus diverges at high altitude, as density tends to zero in any 
atmosphere, isothermal or not. The variation of the Alfven speed with altitude cannot 
reasonably be ignored, since it occurs over twice the density scale height (for a constant 
external magnetic field). 

Assuming that the atmosphere is at rest and its properties do not depend on time, 
the wave frequency w is conserved, and the acoustic wavelength h o  = 277C0/w is finite 
whereas the Alfven wavelength A I  = 2.rrC1/w diverges with altitude. Thus we have 
the following contrast between the asymptotic fields of monochromatic waves: ( i )  the 
hydrodynamic wave retains a sinusoidal waveform in space and time; (ii) the hydromag- 
netic wave is sinusoidal only in time, and becomes monotonic in space at high altitude, 
e.g., the asymptotic amplitude is either constant or decays or grows steadily (without 
oscillation). 

The gas pressure in an atmosphere is the weight of the fluid above, and thus decays 
to zero with altitude; the magnetic pressure is constant throughout the atmosphere if 
the external magnetic field is uniform. Thus, even if the waves are generated in an 
atmospheric region where the gas pressure dominates the magnetic pressure, as the 
wave propagates upward, the latter will take over above a transition layer. This is 
demonstrated by the three modes of vertical magnetoacoustic-gravity waves (figure 
1): (i) the acoustic-gravity mode is a longitudinal hydrodynamic wave; (ii) the Alfven- 
gravity mode is a transverse hydromagnetic wave; (iii) the coupled magnetosonic- 
gravity mode has a transition from a hydrodynamic to a hydromagnetic regime. 

The wave equation in the absence of an external magnetic field has constant 
coefficients (in an isothermal atmosphere for which the sound speed and scale height 
are constant), whereas in the presence of an external magnetic field the coefficients 
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vary substantially (in the isothermal case the Alfven speed varies exponentially over 
twice the scale height). Thus we have the following contrast: (i) hydrodynamic waves 
are represented by complex exponentials, i.e., have sinusoidal waveforms, grow or 
decay exponentially and have linear phases; (ii) hydromagnetic waves are represented 
by special functions, e.g., Bessel ( 9 9  4, 5) or hypergeometric ( 9 9  6, 7), of regular 
( 9 9  4, 6) or singular ( $ 9  5 , 7 )  type, and may be not periodic in space, e.g., grow linearly, 
have bounded amplitude or decay, and have asymptotically finite phase. 

Another consequence of hydromagnetic wave equations having variable coefficients 
is that the velocity and magnetic field perturbations satisfy different laws, namely, (i) 
for propagating waves (figure 2 )  the velocity perturbation grows linearly and the 
magnetic field perturbation is asymptotically constant, the phase (figure 3) being finite 
for both; (ii) for standing modes (figure 4) the velocity perturbation is asymptotically 
finite (but not zero) and the magnetic field perturbation decays exponentially. These 
asymptotic laws are proved generally for any atmosphere (with bounded temperature 
and vanishing density at high altitude), and are confirmed in the isothermal case, in 
which the wavefields are calculated exactly over the entire altitude range. 

2. Magnetoacoustic-gravity wave operator 

The general equations of compressible flow under magnetic H and gravity g fields 
are, in the absence of (viscous and resistive) dissipation, 

aH/dt + v  x i~ x U )  = 0, ap/at -I- v a ( p u )  = 0, 

p [ a u / a t  + (U V , u ]  + vp = pg -(r*/4rr)H x (C x H ) ,  

( l a ,  6 )  

(IC) 
where p, p ,  U denote the density, pressure and velocity and the magnetic permeabil- 
ity. The induction equation ( l a )  states that the magnetic field lines are ‘frozen in‘ 
the (perfectly conducting) fluid, the equation of continuity ( l b )  expresses conservation 
of mass, and the momentum equation ( I C  ) balances the inertia force and pressure 
gradients against weight and magnetic force. 

The flow quantities are assumed to be the superposition of: (i) an atmospheric 
mean state of rest, with a constant external magnetic field Ho of arbitrary direction, 
and pressure p o ( z )  and density po(z j varying with altitude in agreement with hydrostatic 
equilibrium Vp, = pog ; (ii) an unsteady and non-uniform perturbation of velocity U‘, 
pressure p ’ ,  density p ’  and magnetic field h ’ :  

( v , H , p , p J = ( O , H , , p o ( z ) , p o ( z ) ) + ( u ,  h , p ’ , p ‘ ) .  ( 2 )  
The atmosphere is generally not isentropic (this would correspond to neutral stability 
(e.g. Landau and Lifshitz 1953, Q 4)), but we assume the propagation of perturbations 
to be adiabatic: 

[CO(Z)]* = ( d p ~ / a p ~ ) ~ ,  (3a ,  b )  a e ’ l d t  + L’ * ve’ = C d a p ’ / d t  + L’ * V p ’ ) ,  

where Co(z )  denotes the sound speed and s the entropy derisity. 

ah/at - (ii0 - V ) U  +H,,(v . U )  = 0, 

Considering waves of small amplitude with regard to the perturbations: 

ap l /a t  + U . vp, + po(v e U )  = 0, ( 4 4  b 1 
(4c 1 
(4d) 

poau/at  + v p ‘  = p’g + ( p / 4 ~ )  [V(Ho a h 1 - ( H ,  e V ) h ] ,  

apI/at + p , ( ~  . g) +poco(v  - U )  = 0.  



420 L M B  C Campos 

These linearised equations establish the following balances: (a) induction: magnetic 
field oscillation against velocity transport along mean magnetic field lines and fluid 
compressibility; (b) continuity: density oscillation against atmospheric stratification 
and fluid compressibility; (c) momentum: local inertia against perturbation pressure 
gradient, buoyancy force and cross-stresses between mean and perturbation magnetic 
fields; (d) adiabaticity: pressure oscillation against gravity and compressibility. 

The system (4a-d) can be eliminated for the velocity U, by applying a / a t  to (4c) 
and substituting ah/at, ap'lat and ap'lat respectively from (4a, b, d ) :  

a2u/ar2 - ci v(v. U )  -v(g S O )  - ( y  - 1 ) g p  - U )  

+(/.L/4'Tpo)[-(~o'v)U + H I J ( H O *  v ) ( v ' U ) - H i V ( V '  U )  

+ (Ho V)V(Ho * U)] = 0. 

Introducing the Alfvkn speed C1 and the unit vector I along magnetic field 

[CI(Z)]' Z / . L H ? I / ~ . ~ ~ ~ ( Z ) ,  I = H o / l H o l ,  

O,,(a/at, v, 1 * V)u,(x, t )  = 0, 

equation ( 5 )  is written 

where the magnetoacoustic-gravity wave operator is given by 

o,, = a,, a 2 / a t 2  - [ c l ( z  11' a'/aX, ax, - g, a/ax, - ( y  - l)g, a/ax, 

- C ~ ( Z ) ] ~ ( S , ,  a2/ai2- 1, a'/ai ax,) - [ c ~ ( z ) ] ~ ( ~ ~ / ~ x ,  ax, - I ,  a2 /a i  ax,), 

(7b 1 
and involves, besides the derivative with regard to time, a/at, the spatial derivatives: 
isotropic, alax,, and along magnetic field lines, 8 / 8 1  = 1 * V = 1, alax,. 

The deduction of equation ( 5 )  which has been presented holds for non-isothermal 
atmospheres under a constant external magnetic field (McLellan and Winterberg 1968, 
Bray and Loughhead 1974, p 251), and in the form (7b) it brings together the 
magnetoacoustic (Campos 1977) and acoustic-gravity (Campos 1983a) wave 
operators, since it includes the following terms (from left to right): (i) second-order 
time dependence, allowing waves propagating in opposite directions and their super- 
position into standing modes; (ii) isotropic non-dispersive acoustic waves involving 
the dilatation V * U av , /ax ,  ; (iii) anisotropic, dispersive internal waves involving the 
acceleration of gravity g, ; (iv) acoustic-gravity coupling through the gravitational 
acceleration and dilatation; (v)-(vi) non-dispersive, one-dimensional Alfvkn-gravity 
waves propagating along the direction I of the external magnetic field, with a 
stratification effect on the Alfvkn speed Cl(z); (vii)-(viii) magnetoacoustic coupling 
through the dilatation au,/ax, and Alfvkn speed Cl(z), the stratification effect being 
again present in the latter. 

3. Asymptotic wavefields in non-isothermal atmosphere 

Oblique hydromagnetic waves in atmospheres can be reflected or tunnelled (Chiu 
1971), and phenomena occurring over many scale heights are dominated by vertical 
waves, which depend only on altitude z and time t. Whereas three-dimensional waves 
are described clearly by the magnetoacoustic-gravity wave equation ( 5 ) ,  for vertical 
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waves it is more convenient to start from the perturbation equations (4a-d) considering 
two cases: (i) if the external magnetic field is vertical, H O E  (0, 0, H1), the only 
propagating components of the velocity and magnetic field perturbations are U,, h,, 
which satisfy 

ahxiat = H~ av,/az, av,/at = H;'c: ah,/az; @a, b )  

(ii) if the external magnetic field is horizontal (and the x axis aligned with it), 
Ho = (HI1, 0, 0), the propagating components are U,, h,, and satisfy 

(9a 1 
( 9 b )  

ah,/at + H~~ av,/az = 0,  

a2u,/at2 - cg a2v,/az2 i- yg av,/az + H;:c: a2h,/at az = 0.  

Thus we have three modes of vertical magnetoacoustic-gravity waves: 
141Mb 

14187 Table 1. Comparison of magnetoacoustic-gravity wave modes. 

Mode Slow Fqst Alfven 

Designation 
Type 
Dynamics 
Magnetics 

Diagram 
Altitude z 
(vertically upwards) 

g I  T V  

Acoustic-gravity Magnetosonic-gravity Alfven-gravity 
Longitudinal Coupled Transversal 
Compressible Compressible Incompressible 
Amagnetic Magnetic Magnetic 

h 

Figure 1. Sketches of the three magnetoacoustic-gravity wave modes in the case of 
vertical propagation. ( a )  Acoustic-gravity wave; ( b )  Alfven-gravity wave; ( c )  magneto- 
sonic-gravity wave. 

Atmosphere 
Gravity g (090, -g 1 (030, -g) ( O , O ,  -g) 
Magnetic field H 0) (HI 1, H,, 0) (0, Hy, HI) 
Density P ( Z )  P ( Z )  P ( Z )  

Pressure P ( Z )  P ( Z )  P ( Z )  

Perturbation 
Velocity u(z, r )  ( O , O ,  U, 1 (090, U*) 
Density p ' ( z ,  r )  p ' f O  p ' f O  
Magnetic field h (z, t )  ( O , O , O )  ( h x ,  0,O) 

Dissipation 
Dynamic viscosity U f O  

Ohmic conductivity U = =  

Hall conductivity L = c c  

U f O  

U Z C C  

[ f a  

U f O  

U # =  

[=a, 
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(i) the acoustic-gravity mode is independent of the magnetic field (C: = 0 in ( 9 b ) ) ,  

{a2/at2- [c,(z)]’ a2/az2 + yg a/az)~,(z, t )  = 0 ,  (10) 

and is longitudinal (the velocity perturbation lies in the direction of propagation), and 
hence propagates a dilatation B * U = dv,/az ; (ii) the Alfvbn-gravity mode ( 8 4  b ) ,  

{a2/a t2- [c , (~) ]2  a 2 / a ~ 2 ) ~ , ( ~ ,  t )  = 0 ,  (1 1) 

corresponds to a vertical external magnetic field, and propagates velocity and magnetic 
field perturbations which are transversal and parallel; (iii) the magnetosonic-gravity 
mode (9a, b ) ,  

~~z~at2-{[co(z)]2+[cl(z)]2) a 2 / a z 2 + y g  a/az]u,(z, t )  = 0, (12) 

corresponds to a horizontal external magnetic field, and propagates a longitudinal 
velocity and transverse magnetic field perturbation, thus coupling compressibility with 
magnetism, 

Eliminating (8a, 6)  for the magnetic field perturbation we obtain: for Alfvbn- 
gravity waves 

(13a) 

( i3b)  

{a’/at’-a/ar[~,(z)]’ a/at)h,(z, t )  = 0, 

~~2/atz-~/~z{[c,(z)]z+[~,(z)]2)~/az f y g  a/az]hx(z, t )  = 0. 

and for magnetosonic-gravity waves 

Comparison of (13a) with (11) shows that for Alfvkn-gravity waves the velocity and 
magnetic field perturbations satisfy: (i) the same equation (11) for a homogeneous 
medium, for which the Alfvkn speed (6a)  is constant; (ii) equations differing by the 
term (which appears in (13a) in addition to those in (11)) 2Cl(dCl/dz)a/az, which 
is non-zero in a non-uniform medium, such as an atmosphere. A comparison of (13b) 
with (12) would lead to similar conclusions for magnetosonic-gravity waves, with the 
extra term (in (13b), not appearing in (12)) being ~ ( C O  dCo/dz + C1 dCl/dz)a/az, 
where the acoustic part is zero only in an isothermal atmosphere, whereas the Alfvbn 
part is not zero even in the isothermal case. The difference in waveform for the 
velocity V and magnetic field H perturbation spectra is demonstrated by the induction 
equations (8a), (9a), which for a monochromatic wave of frequency w (i.e. factor 
e-’”‘) read respectively for Alfvkn-gravity and magnetosonic-gravity waves 

H ( z  ; U )  = i(H1, -HI&-’ dV(z ;  w)/dz, ( 1 4 4  6)  

and allow the magnetic field perturbation to be calculated from the velocity one 
without solving the second wave equation (13a, 6). 

A standing hydromagnetic wave has a velocity perturbation which is finite (but 
not necessarily zero) at high altitude, and thus, by (14a, b ) ,  an asymptotically vanishing 
magnetic field perturbation: 

v ( z ,  t )  - V(0; w ) d ( w )  e-’”‘, h (2, t )  - 0, (1% b )  

where d ( w )  is the constant ratio of asymptotic to initial velocity, which generally 
depends on frequency w. For propagating.waves we note that (1 l), (12) imply 

(16q  6)  
respectively for AlfvBn-gravity and magnetosonic-gravity waves. In any atmosphere 
the density decays with altitude, i.e. p ( z ) + O  as z +CO, and thus the AlfvBn speed 

d’V(z; w)/dz’-O(w’C;’V), 0{w2C;*[1 +(CO/C,)~]-’V), 
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diverges, C,  +a, so that the RHS of (13~1, b )  vanishes (the sound speed CO remains 
bounded if the temperature is finite and hence Co/C,+O). From d2V/dz2-0 it 
follows that the velocity perturbation grows linearly, and from (14a, 6 )  that the 
magnetic field perturbation is asymptotically constant: 

V ( Z ;  U ) - -  V(0; Z ) [ U ( W ) Z  + b ( w ) ] ,  H ( z ;  w ) -  V(0; wHH1, - H l l ) w - ' a ( w ) .  
( 1 7 ~  b )  

The asymptotic laws (15a, b ) ,  (17a, b )  have been proved generally for any atmosphere 
with asymptotically vanishing density (and bounded temperature), and will be 
confirmed in the isothermal case, for which the functions a, 6,  d ( w )  can be calculated 
explicitly. 

4. Standing Alfven-gravity modes 

In an isothermal atmosphere the density p (2) = po decays exponentially over the 
scale height L ,  and thus the Alfven speed (6a)  increases over twice the scale height: 

c,(z) = c1 c :  = ~ H : / 4 r p 0 ,  (18a, b? 

where c1 denotes the Alfven speed at altitude z = 0. Since the atmospheric properties 
do not depend on time, we may use a Fourier decomposition: 

V, H ( z ;  w )  e-iwr dw, 

where V , H  denote the velocity and magnetic field perturbation spectra, and the 
frequency w is conserved. 

Substituting (18a), (19a) in (1 l), we obtain the equation for the velocity perturba- 
tion spectrum of vertical Alfven-gravity waves in an isothermal atmosphere: 

(20a 1 [d2/dz2 + (w/cl)' e-"L]V(z ; w )  = 0. 

[d2/dz2 + L-' d/dz + (w/c l ) '  e-ziL]H(z ; U )  = 0 ,  

The magnetic field perturbation spectrum satisfies a different equation (13), 

(206)  

and is related to the velocity perturbation by (14a).  
The problem involves only one dimensionless quantity, namely, the scattering 

parameter 

a = wL/CI = klL = 2 1 ~ L / h l ,  (21a, b )  
where kl is the wavenumber, A 1  the wavelength and A the atmospheric density change 
over a wavelength. Since the atmospheric properties vary with altitude, the wavelength 
and wavenumber are not conserved, the quantities indicated being local values (i.e. 
the wavelength and wavenumber in a homogeneous medium whose density would 
equal the local density). The WKBJ approximation a 2 =  k:L2 >> 1 corresponds to a 
small atmospheric density change A - 1 over a wavelength, whereas the exact theory 
is required for long waves k l L  - 1, for which the atmospheric density changes substan- 
tially, A >> 1, over a wavelength. 

A = p o / p  (A 1 )  = e*''= = 

In order to solve (20a)  exactly we perform a change of variable: 

d/dz = - ( u / 2 L )  dldu, (22a, 6 )  
-2/2L - 

U = 2a e - ( ~ W L / C ~ )  e-'"=, 
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transforms the operator (20a)  into U d2/du2+d/du  + U ,  which is that of the Bessel 
equation of order zero; thus we can write the solution of (20a) as a linear combination 
of Bessel functions of order zero (and first and second kinds) with variable ZI (22a):  

(231 

where A,  B are arbitrary constants of integration. 
If we consider waves perfectly reflected from the atmospheric layer z = z o ,  the 

corresponding upper boundary condition requires the vanishing of the velocity per- 
turbation V(zo; W )  = 0. In the limit 20' CO when the reflecting layer recedes to infinity, 
we cannot require a vanishing velocity perturbation, since as z +CO and II + O  (by 
(22a)),  the Bessel functions satisfy J 0 ( u ) + l  and Yo(u)+Oo, and thus (23) cannot 
vanish asymptotically (except in the trivial case A = 0 = B ) ,  since the first term is 
bounded and non-zero and the second diverges. We can have an asymptotically finite 
but non-zero velocity perturbation by setting B = 0 # A  in (23), to obtain a 'node at 
infinity'. In this case the kinetic energy (per unit volume) pv2/2-0(e-"") decays 
like the atmospheric density, and the magnetic energy ph2/8?r  - O(e-2"L) decays 
with altitude at a faster rate, since for asymptotically bounded velocity it will be shown 
(see (286)) that the magnetic field perturbation decays like h -O(e-'lL). Thus the 
total energy per unit volume E, which is the sum of the kinetic and magnetic energies, 
vanishes asymptotically, E - O(e-"L), showing that no energy is radiated to or comes 
from infinity. This confirms that the condition B = 0 selects in (23) a standing wave, 
and the remaining constant of integration can be determined from the initial velocity 
perturbation spectrum: 

V(z ; w )  = AJo[(2wL/~l)e-'/~"]+BY0[(2wL/cl) 

Vo(wj= V(O;w)=AJo(2wL/cl) ,  (24) 
so that the velocity perturbation is given, at altitude z and time t ,  by (19a) :  

+m 

v,(z, t )  = V,Cw){Jo[(2wL/cl) e-Z'2L]/Jo(2wL/cl)} dw. (25) 

If we denote by a ,  the zeros of the Bessel function of the first kind of order zero 

w, = c1an/2L, A, ~ ~ I T c ~ / w ,  = 4 ~ L / a , ,  (26~1, b )  
which are respectively the frequencies and (reference) wavelengths of standing vertical 
Alfven-gravity modes in an isothermal atmosphere. The compactness parameter 
(21a)  for the nth mode, a,, = an/2=k,L = 27rL/A, = a,/2, shows that the WKBJ 
approximation would not apply to the first few standing modes, since the density 
change A, =exp(A,/L) = exp(4.rr/an) is substantial over a wavelength. 

The integral (25) can be evaluated as Ti times the sum of the residues at the simple 
poles on the positive real axis for which n = 1 , 2 ,  . . . and w, > 0 (excluding n = 
-1, -2, . . . and w ,  < 01, and denoting by b, = -Jb (a,) =Jl(a,,) the slope of the Bessel 
function Jo at its zero a,, we obtain for the velocity perturbation 

I-, 
J d a , )  = 0, which are simple, then the integrand of (25) has simple poles for 

and from (8a)  for the magnetic field perturbation 

h,(z,  t )  = (77H1/2L) 1 Re[Vo(w,) e ~ ' " n ' ] b ~ ' J l ( a ,  (27b) 
X 

n = l  
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Thus the wavefield is represented at all altitudes and times, for both the velocity ( 2 7 a )  
and magnetic field (27b)  perturbation, as a superposition of the standing modes (26a).  

The expressions (27a, b )  remain valid at high altitude as z + 03, U + 0, J o ( u )  + 1 
and J l ( u )  + u / 4 ,  and thus the velocity and magnetic field perturbations for Alfven- 
gravity waves standing vertically in an isothermal atmosphere are given by 

X 

h , ( z ,  t ) - ( ~ H 1 / 8 L )  e-"L (an/bn) Re[Vo(wn) e-lwn'], (286) 
n = l  

to an exponential order of approximation O[(a:/16) the same accuracy being 
obtained at lower altitude for lower-order modes. 

The results (28a, 6 )  agree with the general predictions (15a, 6 )  that standing 
hydromagnetic waves have bounded velocity perturbation and exponentially decaying 
magnetic field perturbation, and specify the function d(w ) for the nth Alfven-gravity 
mode in an isothermal atmosphere: 

elwn'c,(co; t) /Vdw,,)=diw,) = - iml/2Lbn = -i7i-clwn/anb,. ( 2 9 )  

Thus the growth in the asymptotic velocity perturbation relative to the initial value 
is larger for higher-order modes. 

5. Propagating Alfven-gravity waves 

The solution ( 2 3 )  of ( 2 0 a )  can also be written as a linear combination of Hankel 
functions of (order zero and) first and second kinds: 

V(z ;  w )  = A H h 1 ' [ ( 2 w L / c l )  e-"2L]+BHb2'[(2wL/cl) (30) 

where A, B are new constants of integration. The Hankel functions have asymptotic 
forms (Watson 1944, p 198) 

( 3 1 )  
and thus H ' " ( H ' * ' )  correspond respectively to waves propagating in the direction of 
increasing (decreasing) U ;  since by 122a) the increasing (decreasing) U correspond to 
decreasing (increasing) altitude z ,  the first (second) term of ( 3 0 )  should represent 
respectively a downward (upward) propagating wave. 

This conclusion can be checked if we consider high-frequency waves for which the 
WKBJ approximation A:/L'<< 1 applies over a fraction of the scale height z2<< L 2 ,  so 
that the overall change in the wave is small. This corresponds to large U 1 2 2 ~ ) :  

~ i , '  '' ( u  - i 2 / x u ) " *  exp[*i(u - x/4j][l+ ( U  - ')I,  

U = 2 w L / c l -  W Z / C ~  + O ( w Z * / c l L )  = 2k1L - k l z  + O ( Z  2 / h  IL) ,  ( 3 2 ~ )  
for which the asymptotic form (31) yields 

[ I +  O(A i/L)I, ( 3 2 6 )  
showing that the first (second) term of (30) has the factor e-1k12 (eclklz) corresponding 
respectively to a downward (upward) propagating wave. From ( 3 2 6 )  it follows that 
in both cases the amplitude of the high-frequency Alfven-gravity wave grows initially 
with altitude over four times the scale height t' this result agrees with the 

1 / 2  z / 4 L  F k , :  e+ i2k ,L- r r /4 )  H'1,2'(u) = ( c I / m ~ )  e e 
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constancy of the initial energy flux J -pv2C1 ,  bearing in mind that the density decays 
like p - 0(e-'lL) and the Alfvbn speed (18a) grows like C1- O(e"2L). 

It will be noted that the two terms of (30) cannot be readily identified as propagating 
waves, since the sinusoidal waveform exp(*ik lz) is never assumed by low-frequency 
waves, and even for very high-frequency waves the accumulated effects of stratification 
change the sinusoidal waveform into an unrecognisable shape within a few scale 
heights, Thus, in order to identify with certainty the wavefields arising from the wave 
initially propagating upward, we have followed the following procedure (which, of 
course, also applies to downward propagating waves): (i) we apply the radiation 
condition (Lighthill 1964), selecting only the upward propagating term with factor 
exp(iklz), in the high-frequency, low-altitude (WKBJ) approximation; (ii) we retain, 
for all frequencies and at all altitudes, only that term which complies with the radiation 
condition in the WKBJ limit, and corresponds to a wave emitted upwards at level 
z = 0. The procedure (ii) could be designated consistency principle in analogy (Lighthill, 
private suggestion) with the correspondence principle of quantum mechanics (Landau 
and Lifshitz 1966, 5 6), which requires that in the short-wave limit A + 0 the classical 
solution in a homogeneous medium be regained. 

Thus, to select an upward propagating wave we set A = 0 in (30), and determine 
the remaining constant of integration from the initial velocity perturbation spectrum: 

(33) V , ( w )  = V ( 0 ;  w )  = BHk2' (2wLlcl). 

Since the Hankel function does not vanish for real argument there are no resonant 
modes, and (30) can be divided by (33) to yield the velocity perturbation spectrum 

(34a) V ( Z  ; w )  = [ v O ( w ) / ~ b 2 '  ( ~ ~ L / c , ) ] H ~ ~ ' [ ( ~ w L / c ~ )  e - 2 f 2 L  I, 

and the magnetic field perturbation spectrum (14a) 

H ( Z  ; w )  = i(Hl/cl)  e-"2'[~~(~)/~b2'(2w~/~l)I~~2)[(2w~/cl) 

for an Alfven-gravity wave propagating vertically in an isothermal atmosphere. 

(346) 

The Hankel function H'2' has a logarithmic singularity as U + 0 (Kamke 1971, vol 

(35) 
(where 4 denotes Euler's constant) which corresponds to the linear divergence of 
the velocity perturbation spectrum with altitude, 

V ( Z  ; w )  - V ~ ( W ) [ H ~ * '  ( 2 w ~ / c l ) I - ' [ ( i / a ~ ) z  + 1-245~ - i ( 2 / ~ )  l o g ( 2 w ~ / c ~ ) ] ,  

and asymptotic constancy of the magnetic field perturbation spectrum, 

1, p 439): 

Ha'  ( U )  = - i ( 2 / ~ )  log U + 1 - i24 /x  + 0(u2/4),  

i36a 1 

H ( z ;  U ) -  -(H1/.rrw)Vo(w)[Hb2'(2wL/cl)l-'. (366) 
The asymptotic laws (36a, 6 )  are valid to a high order of approximation 
O[(k?L2/4) the same accuracy being obtained at lower altitude for longer waves. 

The results (36a, b )  agree with the general property of propagating hydromagnetic 
waves (17a, 6 )  having linearly diverging velocity and asymptotically constant magnetic 
field perturbations, and specify the functions a ( U ) ,  b ( U )  for Alfvbn-gravity waves in 
an isothermal atmosphere: 

a ( w ) ,  b ( w )  = [Hb2'(2wL/c~)l-1{i/.rrL, 1 -i24/7r -i(2/7r) log(2w~./c~)}.  (37a, b )  
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The function a(w),  in particular, specifies both the rate of growth of the velocity 
perturbations and the asymptotic value of the magnetic field: 

a (U)  - [ V o ( ~ ) ] - '  dV(z ; w)/dz = -i(o/H1)[ Vo(w)]-'H(z ; U).  ( 3 8 ~ ~  6 )  

Concerning the energy unit volume: (i) although the velocity perturbation diverges 
linearly, U - O ( z ) ,  the kinetic energy p v 2 / 2  - O(z2 vanishes asymptotically at 
high altitude; (ii) since the magnetic field perturbation h is asymptotically constant, 
so is the magnetic energy ph2/8rr .  Thus the situation is asymptotically similar to a 
plane propagating Alfven wave as concerns the magnetic energy per unit volume 
which is constant, but not for the kinetic energy which vanishes. Thus, in contrast 
with the equipartition of kinetic and magnetic energy for Alfven waves propagating 
in a homogeneous medium, for Alfven-gravity waves propagating upward in an 
atmosphere: (i) there is equipartition of energy only initially, namely, H - ( H l / c l ) V  
for z / L  << 1 in (34~1, b )  leading topV2/2  - ( p / 2 ) ( c l / H 1 ) ' H 2 - ~ H 2 / 8 r r ;  (ii) as the wave 
propagates upward into more rarefied atmospheric regions, the magnetic predominates 
over the kinetic energy, and asymptotically all energy is magnetic. This conclusion, 
which follows from the asymptotic laws (17a, b) ,  applies to Alfven-gravity waves 
propagating in isothermal or non-isothermal atmospheres with bounded temperature. 

6. Standing magnetosonic-gravity modes 

The acoustic (3b) and Alfven (6a) speeds are given respectively by 

[C0(Z)l2 = YP(Z)/P(Z), [Clb )I2 = 2P/P ( z  1, (39a, 6 )  

where p ( z )  denotes the gas pressure and P the magnetic pressure. The analogy 
between the formulae (39a, b )  is completed if we note that for a perfect gas y = 1 + 2/N,  
where N is the number of (rotational and translational) degrees of freedom of the 
molecule, so that we have the following cases: (i) for a three-dimensional, polyatomic 
molecule N = 6, y = !; (ii) for a diatomic gas (or linear polyatomic molecule) N = 5 ,  
y = ?; (iii) for a monatomic gas N = 3, y = 5 ;  (iv) the value y = 2 used in (396) 
corresponds to N = 2, i.e. a magnetic gas whose molecules have only two degrees of 
freedom, transverse to the direction of propagation (which coincides with magnetic 
field lines for Alfven waves). 

The ratio of sound and Alfven speeds (squared) is also the ratio of gas magnetic 
pressures: 

[ C o ( Z ) / C 1 ( Z ) l 2  = ( Y / 2 ) [ P ( Z ) / P I ,  (40) 
apart from a constant factor y / 2  = 3 ,  &, 2 respectively for polyatomic (i), diatomic (ii) 
or monatomic (iii) perfect gases. Thus the magnetosonic-gravity wave equation (1 2 )  
describes the transition between two regimes: (i) the hydrodynamic regime in regions 
sufficiently dense for the gas pressure to dominate the magnetic pressure, 

( a 2 / a t 2 - c i  a 2 / a z 2 + c k - '  a/az)u,(z, t )  = 0 [ ( 2 ~ / y p )  a2v,/az2], (41) 

corresponds to the vertical acoustic-gravity wave operator (Moore and Spiegel 1964, 
Campos i983a); (ii) the hydromagnetic regime, at altitudes sufficiently high for the 
gas pressure to be negligible compared with the magnetic pressure, corresponds to 
the Alfvkn-gravity wave equation (11) for u, (z ,  t )  to order O[(yp/2P) a2u,/8z2]. 
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The transition from the hydrodynamic to the hydromagnetic regime as the wave 
propagates upward, and the influence of the initial acoustic propagation on the 
magnetically dominated asymptotic wavefield, will be examined by solving (12) exactly 
in an isothermal atmosphere, for which the sound speed c o  is constant and the Al fvh  
speed is given by ((18a, 6 )  with HII):  

[a2/at2-(c;  +c: e"L) a 2 / a z 2 + c k L - '  a/az ]v , (z ,  t )  = 0, (42a) 

or, for the velocity perturbation spectrum (19u), 

{[ 1 + (c 1/co)2 ellL] d2/dz2 - L-' d/dz - (o/cO)~}V(Z ; U )  = 0, (42b) 

which involves two dimensionless quantities: ( i )  the acoustic compactness parameter 
(Y = w L / c o  (analogous to ( 2 1 ~ ) ) ;  (ii) the ratio of phase speeds c l / c o  at altitude z = 0. 

If we perform in (426) a change of variable, 

d/dz = L-l d/du, (430, b 1 2 - 2 l L  
U =-(co/cI )  e , 

the differential operator (42b) transforms into a hypergeometric one (1 - u ) u  d2/du2 + 
(1 -2u) d/du - w 2 L 2 / c &  with parameters (Forsyth 1929, p 214) c = 1, a + b = 1, 
ab = w 2 L 2 / c i .  Thus, a,  b are the roots of 

(44 )  -2 2 2  7 O = u  ( a + b ) - u b = v 2 - v - w  L /CO, 

and the solution of (42b) is a linear combination of hypergeometric functions of first 
and second kinds: 

V ( z ;  w )  = A F ( a ,  b ; I ;  - ( C ~ / C ' ) ~  e-Z'L)+BG(a, 6 ;  1; -(co/c1)2 (45) 

where the coefficients A ,  B are arbitrary constants of integration. 
The equation (44) has a double root for 

w* = co/2L, A, = ~ T W , / C ~ =  ~ T L ,  (46a, b 1 
which are designated respectively the cut-off frequency (46a) and wavelength ( 4 6 b ) ,  
since: (i) below the cut-off frequency w < O* (or above the cut-off wavelength A > A,) 

(474  b )  2 2 112 
0, b = (1*P)/2, P + - w  /U* /  9 

all quantities in (45) are real and only standing modes exist; (ii) above the cut-off 
frequency w > U *  (or below the cut-off wavelength A < A , )  

a, b = : l i K L ,  K = ( w / c , ) ~ w 2 / w : :  - 11"2 (484 b )  

and since (45) involves complex quantities, propagating waves are possible. 
It will be noted that the cut-off conditions (46)-(48a, b )  are exactly the same as 

those for vertically propagating acoustic-gravity waves (Lamb 1932, p 542, Campos 
1983a). These extend unchanged to niagnetosonic-gravity waves since the magnetic 
field has no wave filtering properties, as demonstrated by the absence of a cut-off 
frequency for Alfvkn-gravity waves ( 9  4). Thus the properties of the atmosphere as 
a high-pass filter of acoustic-gravity waves are inherited by the magnetosonic-gravity 
waves. 

The hypergeometric function of the second kind is singular as z + a3 and U + 0, 
and since the velocity perturbation of standing modes must be bounded (§  4), we set 
B = 0 in (45). The remaining constant of integration is determined from the initial 
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velocity perturbation spectrum: 

Vo(w)= V(O;z )=AF(1 /2+@/2 ,  -1 /2-0 /2 ;  1; - c i / c f ) .  (49)  

Resonance occurs (A = CO) whenever the atmosphere is excited ( Vo(w) f 0) at frequen- 
cies w, which are roots of 

X P-1  

= 1 + c [(-)p(co/c1)2p/p!(p + l)!] n ( q 2 + q  + w 2 L 2 1 c h  (50') 
p = l  q = o  

which defines the normal modes. These correspond to poles of the integrand of (( 19a);  
(45) with B = 0; (49)) 

Vz(z, t )  = I-, Vo(w)[F(a, b ;  1; -(c0/cd2 e-'lL)/F(a, b ;  1; -c$/c:)]e-'"'dw. 
+X 

(51) 

This formula can be evaluated by residues to yield the velocity perturbation 
spectrum, 

u z ( z ,  t )  = r Im[Vo(w,) 
W"<W. 

x f i1F(1 /2+P, /2 ,  1 /2-Pn/2 ;  1 ;  -(co/c1)2 

and the magnetic field perturbation spectrum ( 9 a ) ,  

h,(z, t )  = (dJ l lL/c?)e-"L Re[Vdw,) e--'wrL'] 
W n < W .  

X ( ~ n / f n ) F ( 3 / 2 + P n / 2 , 3 / 2 - P , / 2 ;  2; - (co /C1)2  ( 5 1 6 )  

where (47b)  Pn = 11 - (w,/w,)2i1'2 and 

f n  =aF(1 /2+Pn /2 ,  1 /2-pn/2 ;  I; -ci/c:)/aw,. (52) 

The general wavefields (5  la ,  b )  of magnetosonic-gravity waves vertically standing in 
an isothermal atmosphere are thus a superposition of the standing modes whose 
frequencies (50) lie below the cut-off: 0 < w, < w * .  

The formulae (514  b )  remain valid at high altitude as z + CO and the hypergeometric 
functions of vanishing argument tend to unity, yielding the asymptotic velocity and 
magnetic field perturbations for a magnetosonic-gravity wave standing in an isothermal 
atmosphere: 

h , ( z ,  t )  - ( r H l l L / C : )  ( w n / f n )  Re[Vo(w,) (53b)  

these formulae being valid to an exponential order of accuracy 0[(1- 
pn)2 (co /c1 )2  The results (53a, 6 )  agree with the general prediction that standing 
hydromagnetic waves have bounded velocity perturbation (1 5a ) and exponentially 
decaying magnetic field perturbation (15b) ,  and specify the function 

(54)  

W , < W .  

e'w"'v,(s;  t)/Vo(w,) =d(w,)  = -ir /fn.  

for the nth mode in an isothermal atmosphere. 
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7. Propagating magnetosonic-gravity waves 

For propagating waves a, b are given by (48a), and the velocity perturbation spectrum 
is given by (45), 

V ( Z ; O J ) = A F ( ~ / ~ + X L ,  1/2-iKL; 1; -(c0/c1)' 

+BG(1/2+iKL, 1/2- iKL; 1; -(co/cl)' ( 5 5 )  

as a linear combination of hypergeometric functions of first and second kinds, whose 
coefficients A ,  B are arbitrary constants of integration. The magnetic field perturbation 
spectrum follows from (146): 

H ( z ;  U )  = -i(wLHll/c:) e-""[AF(3/2+iKL, 3/L -iKL; 2 ,  - ( C ~ / C ~ ) ~  

+BG(3/2+iKL,  3/2-iKL; 2; -(co/cd2 156) 

where we have used the derivation formula d F ( a ,  b ; c ; z) /dz  = ( a b / c )  
x F ( a  + l , b  + 1; c + 1; zj .  

The formulae for the perturbations of magnetosonic-gravity waves propagating 
vertically in an isothermal atmosphere hold if -1 < U < +l  in (43a),  that is: (i) over 
the entire altitude range 0 G z <CO, if at the bottom of the atmosphere the gas pressure 
is sufficiently low or the magnetic field strong enough for the Alfvkn speed to exceed 
the sound speed c l > c o ;  (ii) if, as is physically more common in wave generation 
regions co > cl ,  the expressions ( 5 5 a , b )  arevalid in the high-altitude range z* < z < CO, 

where the Alfvkn speed (18a) exceeds the sound speed: 

z* =2L log(co/clj = L log(yp/2P). (57) 

Thus the solution ( 5 5 ) ,  (56) represents the hydromagnetic regime in regions where 
the magnetic pressure dominates the gas pressure. 

The solution below the transition layer (57) is obtained by analytic continuation 
from U to l l u ,  using the formulae (Caratheodory 1964, vol 2, pp 168-9): 

F ( a ,  6; c ;  U )  

= [ r ( c ) r ( b - a ) / r ( c - a ) r ( b ) l ( - U ) - Q ~ ( ~ + i - c ,  a ; a  - + I + ;  i / u )  

+symmetric in (a, b ) ,  (58a 

G(a,  b ;  c ;  U )  

= [ r ( b  - ~ ) / r ( b ) r ( 1 - ~ ) ] [ 2 4  - $ ( i - a j -  $(b)+.rri](-u)-" 

x F ( a  + 1 -c, a ;  a + 1 - b ;  l / u )  +symmetric in (a, b ) ,  (58b  

where r, 9 denote respectively the gamma and psi functions and 4 is Euler's constanl 
The velocity perturbation spectrum is given by ( 5 6 ) :  

v ( ~ ;  = r ( - 2 i ~ ~ ) [ r ( i / 2 - i ~ ~ ) ] - ~ ( ~ ~ / ~ ~ )  e I-2iKL ez /2L  IKZ 

x {A + [24 - 29(1/2 - X L )  + .rri]B}F(-(cl/co) 2 e Z l L  ) 

+(exchange + K  and - K ) ,  (59) 



magneto acoustic-grav ity w aues 43 1 

where 
F, G ( u ) = F ,  G(1/2+iKL, 1 /2+iKL;  l + 2 i K L ;  U), 

F+,  G+=FF,G(3/2+iKL,3/2+iKL; 2+2iKL;u) ,  (60a, 6 )  

in the low-altitude range 0 
The constants of integration A ,  B can now be determined by applying two condi- 

tions. (i) The principle of consistency requires that we keep in (59) only that term 
which (in the WKBJ limit) meets the radiation condition and corresponds to an upward 
propagating wave; thus we retain the first term, which includes the factor elKz, and 
omit the second term (which would have the factor e-'Kz) by setting its coefficient 
equal to zero: 

z < z*.  

0 = A  +[24 - 29(1/2 + iKL)+ ri]B. ( 6 1 ~ )  

(ii) The initial velocity perturbation spectrum: 

vo(w) = v ( o ;  w )  = 

x { A  + [24 - 29(1/2 - ~ K L )  + r i ] ~ } ~ ( - c  :/c i)  
= Ji22'KL (c ) - * I K L  tanh(rKL)[r(iKL)/T(1/2 + iKL)]BF(-c : / c i  1, 

(616) 
using (61a)  and known properties of the gamma function. 

Since the complex hypergeometric function in (61b) does not vanish for real w,  
resonant modes (V,(w) # 0, B = CO) do not exist, and the spectrum is continuous above 
the cut-off frequency (46a).  The quantity K appearing in (59), (60a, b ) ,  as well as in 
( 5 5 ) ,  (56), is the vertical wavenumber defined by (48b), which coincides with the 
ordinary wavenumber K - w / c o  (in the WKBJ approximation) at high frequency (U' >> 
U : ) ,  reduces compared with w / c o  > K at intermediate frequencies (w >U* ) ,  and 
vanishes at the cut-off (K  = 0 for w = w*) when propagation becomes impossible. 
From (59) and (61a) we obtain the velocity and magnetic field (146) perturbation 
spectra: 

( 6 2 ~ )  V(z ;  w )  = V o ( w )  e e [F(-(c1/co)2 e"L)/F(-c:/c~)], 

H ( z ;  w )  = -~ l l [ (1 /2+ iKL) /wL]Vo(w)  e'K'[F(-c?/ci)]-' 

x [F(-(cl/co)' - (C?/~C~)F+(- (CI /CO)~ (626 1 

Noting that U <0 in ( 4 3 ~ 1 ,  and performing analytic continuation in the variable 

z / 2 L  IKZ 

valid in the low-altitude range. 

0 < (1 -U)-' < 1, by means of (Abramowitz and Stegun 1964, p 559) 

F ( a , b ; c ;  1 / ~ ) = ( 1 - - 1 / u ) - " F ( a , c - b ; c ;  l / ( l - -U) ) ,  (63) 
we obtain from (62a, 6 )  the following formulae for the velocity and magnetic field 
perturbation spectra: 

V(Z;  w )  = v 0 j w )  e'/2L eIK'[1 + (cl/cOl2 ez/I]-1/2-1KL 

x{F( [ l+  (co/clI2 e -z 'L l - l ) /F( -c~/c~)} ,  (64a) 
H ( z ;  o) = -iHll[(1/2 +iKL)/wL]Vo(w) e'""[F(-c:/c:)]-' 

x [I  + (cl/c0)'  e-z'L]-112-IKL {F[ 1 + ( C ~ / C ~ ) ~  

- (c:/2c6)[1 + ( C ~ / C O ) ~  e - z ' L ~ - ' ~ + ( [ ~  + (co/c1)2 e~"~] - ' ) ] ,  (646) 
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which are valid over the whole altitude range 0 z < 03, the notation (60~1, b )  being 
used. 

Summarising, we have obtained expressions for the velocity and magnetic field 
spectrum of a magnetosonic-gravity wave propagating vertically in an isothermal 
atmosphere, which are valid in: (i) the low-altitude range 0 c z < z* where (62a, b ) ,  
the hydrodynamic regime, applies, in which the exponential growth of acoustic-gravity 
waves is modified by the magnetic terms in the hypergeometric functions; (ii) the 
high-altitude range z* < z <CO where ( 5 5 ) ,  (56), the hydromagnetic regime, applies, 
which will be similar to Alfvh-gravity waves with a modification due to compressibil- 
ity; (iii) the formulae (64a, b )  valid over the entire altitude range 0 c z <CO describe 
the transition from the hydrodynamic to the hydromagnetic regime, and show that 
the wavefield is finite at the transition layer z = z* (57) between the two regimes: 

( C O / C l ) l  +2iKL[F(  -c :/c ;)]-lF( 1 /2), ( 6 5 ~ )  

x [F(-c:/c;)l-"/2) - (c1/2co)2F+(1/2)l. (656) 

The asymptotic limit Z + C O  corresponds (43a) to u+O, and hence to 
F ( u )  = 1 +O(u)  and G(u)  =log u F ( u ) + O ( u )  =log u +O(u, u log U), so that the 
logarithmic singularity in the high-altitude formula ( 5 5 )  corresponds to the following 
asymptotic wavefields: 

V ( z ;  w ) - [ A  +(7ri+2 log(co/cl))B]-B(z/L), H ( z ;  w)--i(Hll/wL)B, (66~2, b )  

where A,  B are given by (61a, 6). These formulae are valid to a high order of 
approximation O [ ( W L / C ~ ) ~  e-'IL], and confirm the general prediction (17a, b )  that 
hydromagnetic waves have linearly diverging velocity, and asymptotically constant 
magnetic field perturbations. The functions a ( w ) ,  b ( w )  are given by 

(670 1 

-1/2-iKL V(z*;  0) = Vo(w)2 

H ( z * ;  w )  = -iH11[(1/2 +iKL)/wL]Vo(w)2-'/2-iKL (c o/c 1 ) +2iK= 

a ( w ) ,  b ( o )  = +71-1/22-2iKL(Co/C1)2iKL-1[r(i/2 +xL) /T (~KL)]  

xcoth(7rKL) x[Vo(w)/F(-~?/c;)]  

x[-1/L, -24(1/2+iKL)+2 log(co/c1)+2~#1], (676 1 
for magnetosonic-gravity waves propagating vertically in an isothermal atmosphere. 
These asymptotic laws imply that the kinetic pu2/2 - O ( z 2  e-''=) and compression 
pf2c  ;/2p - O(e-'") energies per unit volume vanish asymptotically, whereas the 
magnetic energy p h  2/87r - O( 1) is asymptotically constant, and thus at high altitude 
all energy is magnetic. Considering the energies integrated over an infinite column 
of fluid from z = 0 to z =CO,  the total kinetic and compression energies are finite 
(since z 2  and are integrable from 0 to CO), but the total magnetic energy 
is infinite (as the total energy of a plane wave in an infinite column is also infinite). 

A solution with finite magnetic energy over an infinite column of fluid from z = 0 
to z = CO would be specified (for a given frequency w )  by the condition 

where we have used (14a, b )  and Ho denotes the external magnetic field, vertical for 
Alfven-gravity and horizontal for magnetosonic-gravity waves. A condition analogous 
to (68)  has been applied to viscous acoustic-gravity waves (Yanowitch 1967), and in 
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the present case of non-dissipative magnetosonic-gravity waves (68) could be met by 
setting B = 0 in (56), i.e. choosing the hypergeometric function of the first kind alone, 
so that: (i) below the cut-off frequency w < w* we would obtain standing modes just 
as in § 6, where the condition B = 0 was indeed used, since standing waves must have 
a finite total energy even in an .infinite cavity’ corresponding to perfect reflections at 
z = 0 and z = CO; (ii) above the cut-off frequency w > U * ,  if we had used the condition 
(68) instead of the radiation condition (and consistency principle), then the propagating 
wavefields would be different from those in § 7 ,  since the constants of integration in 
( 5 5 )  would be given by B = 0 and A = Vo(w) instead of (61a, 6). It would follow that 
the low-altitude solution ( 6 2 a )  would be replaced by the sum of an upward propagating 
and a downward propagating (or reflected) wave, and the transition layer z = z* (57) 
between the low- and high-altitude ranges would become a reflecting layer, giving 
rise to the downward propagating wave, and implying that the energy density would 
vanish asymptotically. 

A condition of the type (68) is met by standing modes, and it is also suited to 
propagating waves in the presence of dissipation, e.g., for viscous acoustic-gravity 
waves it requires a finite rate of dissipation by viscosity (Yanowitch 1967), and for 
resistive Alfvh-gravity waves the condition of finite rate of Joule dissipation can be 
put into a similar form (Campos 1983b), essentially that the square of the modulus 
of dV/dz is integrable from 0 to CO. This condition is not suited to  propagating 
non-dissipative waves, e.g., it is not satisfied by a plane wave, and for this reason we 
have not used condition (68) in § §  5 , 7  which are concerned with the propagation of 
non-dissipative magnetoacoustic-gravity waves. 

8. Waveforms, amplitudes and phases 

When studying radiation and propagation phenomena it is usually appropriate (e.g. 
Campos 1978) to illustrate some of the points which have been made analytically by 
plotting the wavefields in a number of cases. The magnetosonic-gravity wave evolves 
from a modified hydrodynamic waveform through a transition region to a hydromag- 
netic one. Since the hydrodynamic waveforms have been illustrated elsewhere (Cam- 
pos 1983a), we concentrate here on the hydromagnetic modes, taking as an illustration 
the simpler case of Alfvbn-gravity waves. For propagating waves we represent the 
ratio of the (velocity and magnetic field perturbation) spectra at altitude z to the 
initial spectra: 

(69a 1 = V(Z ; U ) /  vo(w) = I v ( z  ; U ) /  vo(w) /  exp{i arg[V(z; o)/vo(w)l) ,  

X = iwLH(z ; w )/  Vo(w)H1 

= (wL/H,1)IH(z; w)/Vo(w)I exp{i arg[V(z; w)/Vo(w)I+i~/2) .  (696) 
by plotting against (dimensionless) altitude z / L  (divided by scale height L) the 
following two quantities: (i) the modulus or ratio of amplitude at altitude z to initial 
amplitude (at altitude z = 0) (figure 2 ) ;  (ii) the argument, or phase difference accumu- 
lated from the level z = 0 where waves arise to the altitude z (figure 3). 

The vertical propagation of Alfven-gravity waves in an isothermal atmosphere is 
characterised by a single parameter, the compactness a (21a) which specifies the ratio 
of wavelength to scale height Al /L  = 2 ~ / a  and the density change A (216) within a 
scale height. We give the compactness parameter four values, and record in the table 
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(70a) the following (36a, b )  asymptotic values: (i) the dimensionless slope 
(L/  V,) dV/dz of the velocity perturbation spectrum; (ii) the dimensionless magnitude 
of the magnetic field perturbation spectrum %' ( 6 9 b ) ;  (iii), (iv) the phase difference 
accumulated asymptotically over the altitude range 0 < z < 00, for both velocity 
(arg (V) )  and magnetic field (arg (X)) perturbation spectra: 

(L klL 0.5 1.0 2.0 5.0 
A ~ / L E ~ T / ( L  12.56 6.28 3.14 1.26 
A E p ( O ) / p ( A  1) 2.87 x io5 5.35 x 10' 2.31 x 10 3.51 

x 0.826 0.515 0.400 0.252 
(L/ Vo) dV/dz 0.413 0.515 0.801 1.262 (700)  

arg (VI -96.6" -158.8' 177.6' - 2 5 7.2" 
arg (XI -6.6" -68.8" 87.6" -167.2" 

From the table (70a) or from figures 2 and 3 we can draw the following conclusions: 
(i) the four cases considered range from very long wavelengths over which the 
atmosphere density changes by several orders of magnitude to a case of gradual density 
change over a wavelength, thus including cases for which an exact theory is necessary 
and for which the WKBJ approximation would suffice locally; (ii) the velocity perturba- 
tion exhibits a linear growth with altitude above about three scale heights, the slope 
increasing with frequency; (iii) the magnetic field perturbation exhibits a constant 
value above an altitude of about three scale heights, the actual magnitude decreasing 
with frequency; (iv) the phase shift accumulated during propagation over the entire 
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0 515islopel 

/ I  'VI/ 
I 
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/ 
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I, I 

0.252 iz+m I 
1262 islopel 

I I v y  

I 

I 

Figure 2. Alfven-gravity waves propagating vertically in an isothermal atmosphere: ratio 
of amplitudes versus altitude z/L for velocity ( V) and magnetic field ( H )  perturbations, 
for four values of scattering parameter. ( a )  kL = i, ( b )  kL = 1.0, (c )  kL = 2.0, ( d )  kL = 5.0. 
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Figure 3. As for figure 2 except that the ordinate is the phase shift between altitudes z 
a n d 0 .  (a)kL=0.5,(b)kL=1.0,(c)kL=2,(d)kL=5. 

atmosphere 0 < z < 0;) is finite, and corresponds to the phase difference over the first 
four scale heights, the latter being of the same sign for the velocity and magnetic field 
perturbations, of larger modulus for the former, and increasing with frequency in both 
cases. 

The modes of Alfven-gravity waves standing vertically in an isothermal atmosphere 
form a discrete spectrum, with compactness parameter a, = a,/2 and ratio of 
wavelength to scale height AJL = 4.ir/a, specified by (266) the roots a,, of the Bessel 
function (of first kind, order zero) .To. The magnetic field perturbation decays exponen- 
tially to zero, but velocity perturbation tends to a finite, non-zero value (29), both 
having (n - 1) nodes for the nth mode. The table below summarises these quantities 
for the first four modes. 

1 1 2 3 4 

a,  k,L 1.202 2.760 
AnlL 5.225 2.276 
A, = P ( O ) / P ( L )  1 . 8 6 ~  to2  9.74 
V(CC,;W,,J/Vo(w,l -1.926 2.938 
V ( z ; w , ) = O  for - 1.693 
ZlL = 

H ( z ;  w,) = 0 for - 0.822 
z / L  = 

4.237 
1.452 
4.27 

-3.684 
0.929 
2.422 

0.457 
1.404 

5.896 
1.060 
2.90 
4.302 
0.594 
1.525 
3.182 
0.285 
1.076 
2.273 
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From the table (706) or figure 4 we can draw the following conclusions: (i) the first 
few standing modes correspond to long waves, with atmospheric density varying 
substantially over a single wavelength, so that the WKBJ approximation is inapplicable; 
(ii) the magnetic field perturbation decays exponentially and becomes negligible above 
a number of scale heights which increases with the order of the mode, from about 
two for the first mode, to about four scale heights for the fourth mode; (iii) the velocity 
perturbation tends to a constant asymptotic value, which increases with the order of 
the mode, and is reached after an increasing number of scale heights, e.g., two for 
the first mode and four for the fourth mode; (iv) the reason for the asymptotic law 
to take a larger number of scale heights to establish itself for higher-order modes is 
that the nth mode has ( n  - 1) nodes, which are interlaced with the (n  - 2 )  nodes of 
the ( n  - 1)th mode, the nodes of the velocity perturbation being always at higher 
altitude than the corresponding nodes of the magnetic field perturbation. 

-1 926 iz-a) (z+m 1 2 938 -3  684 (z-.mI 

Figure 4. Waveforms of velocity ( V )  and magnetic field (H) perturbations plotted against 
dimensionless altitude z / L  for the first four standing modes of Alfven-gravity waves 
perfectly reflected from infinity in an isothermal atmosphere. (a )  n = 1, (6 )  n = 2,  (c )  
n = 3 ,  ( d )  n = 4  
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